Learning Sentence Representation for Emotion Classification on Microblogs

نویسندگان

  • Duyu Tang
  • Bing Qin
  • Ting Liu
  • Zhenghua Li
چکیده

This paper studies the emotion classification task on microblogs. Given a message, we classify its emotion as happy, sad, angry or surprise. Existing methods mostly use the bag-of-word representation or manually designed features to train supervised or distant supervision models. However, manufacturing feature engines is time-consuming and not enough to capture the complex linguistic phenomena on microblogs. In this study, to overcome the above problems, we utilize pseudo-labeled data, which is extensively explored for distant supervision learning and training language model in Twitter sentiment analysis, to learn the sentence representation through Deep Belief Network algorithm. Experimental results in the supervised learning framework show that using the pseudolabeled data, the representation learned by Deep Belief Network outperforms the Principal Components Analysis based and Latent Dirichlet Allocation based representations. By incorporating the Deep Belief Network based representation into basic features, the performance is further improved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microblog Emotion Classification by Computing Similarity in Text, Time, and Space

Most work in NLP analysing microblogs focuses on textual content thus neglecting temporal and spatial information. We present a new interdisciplinary method for emotion classification that combines linguistic, temporal, and spatial information into a single metric. We create a graph of labeled and unlabeled tweets that encodes the relations between neighboring tweets with respect to their emoti...

متن کامل

Emotion Corpus Construction Based on Selection from Hashtags

The availability of labelled corpus is of great importance for supervised learning in emotion classification tasks. Because it is time-consuming to manually label text, hashtags have been used as naturally annotated labels to obtain a large amount of labelled training data from microblog. However, natural hashtags contain too much noise for it to be used directly in learning algorithms. In this...

متن کامل

A Novel Calibrated Label Ranking Based Method for Multiple Emotions Detection in Chinese Microblogs

The microblogging services become increasingly popular for people to exchange their feelings and opinions. Extracting and analyzing the sentiments in microblogs have drawn extensive attentions from both academia researchers and commercial companies. The previous literature usually focused on classifying the microblogs into positive or negative categories. However, people’s sentiments are much m...

متن کامل

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

WEMOTE - Word Embedding based Minority Oversampling Technique for Imbalanced Emotion and Sentiment Classification

Imbalanced training data always puzzles the supervised learning based emotion and sentiment classification. Several existing research showed that data sparseness and small disjuncts are the two major factors affecting the classification. Target to these two problems, this paper presents a word embedding based oversampling method. Firstly, a large-scale text corpus is used to train a continuous ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013